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Absolute and Conditional Convergence of an Alternating Series 
The Basics 

 
Finally we have an important concept, that of the absolute and conditional convergence of an 
alternating series.  This is very likely to be on any AP question that you see that concerns 
series, so make sure you spend enough time on it.    
 
A series will converge absolutely if the corresponding series of its absolute values converges.  
This is important because we have a lot of tests we can use to test the convergence of series with 
positive terms, so sometimes it is easier to show the positive term series will converge.   If a 
series converges absolutely, then both the original alternating series and the series that 
only contains positive terms will converge.   
 
The Absolute Convergence Theorem says that if the series of absolute values converges, then 
the alternating series will also converge.  An alternating series converges conditionally when it 
does not converge absolutely, but the alternating series does converge (as shown with the 
Alternating Series Test). 
 
Note – When you are given an alternating series, you don’t always have to check for absolute 
convergence.  You only have to do that when they ask you to.  
  
1 - If the directions just say “determine if this alternating series converges”, then you can go 
straight to the AST.   
 
2- If the directions say “determine if the series converges absolutely or conditionally” then you 
have to use one of our other tests and look to see if the all-positive-terms  series will converge.  If 
it does converge, then you can say that the alternating series converges absolutely.  If it does not 
converge, then go to the AST to see if the alternating series will converge conditionally.  
 
Let’s look at some examples: See below! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F: Determine if the series    2
1

sin
1

n

n

n

n





  converges absolutely, converges conditionally, or 

diverges. 
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  2
1

sin
1

n

n

n

n





  
This is our series 

Consider the series  
2

1

sin

n

n

n




  

Since we are asked to check for 
absolute convergence, look at the all-
positive series first. 

2
1

1

n n




  is a convergent p-series where 

p = 2 > 1 
 

2 2

sin 1n

n n
    for all n > 1 

 

Thus 
2

1

sin

n

n

n




   converges by the Direct 

Comparison Test.   

I am going to use the Direct Comparison 
Test, although others would work.  I 
notice that this series is similar to the p-

series 
2

1

1

n n




  and since sine is always 

between -1 and 1, my series will always 
less than or equal to the p-series.   
 

  2
1

sin
1

n

n

n

n





  converges absolutely. 
Our original series, then, must also 
converge. 

 
Note – we never had to even use the AST here because we looked at the positive series first. 
 
 
 

G: Determine if the series    
1

1 10
n n

n





  converges absolutely, converges conditionally, 

or diverges.   
 

   
1

1 10
n n

n





  
This is our series. 

Consider the series:    1/

1 1

10 10 nn

n n

 

 

   
Look at the positive series.  When I 
rewrite it I can see that I can use the nth 
term test. 

1/ 0lim10 10 1n

n
     

The series diverges by the nth term test. 
 

The series    
1

1 10
n n

n





   will also diverge by 

the nth term test. 

The terms approach zero do not 
approach zero, so we know it diverges.  
Since the first part of the AST is the nth 
term test, we already know that the 
series will not converge conditionally 
either. 

 

H: Determine if the series  
1

1
1

ln
n

n n n





  converges absolutely, converges conditionally, or 

diverges. 
 

 
1

1
1

ln
n

n n n





  
This is our series. 

Consider the series: 
1

1

lnn n n




  

First I look at the absolute value 
series.  I used the Integral Test 
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Let   1

ln
f x

x x
 The function is continuous, positive, 

and decreasing in value for all  x  1 so the Integral Test 
applies. 
 

2 2

1 1
lim

ln ln

b

b
dx dx

x x x x




   

 

   2
lim ln(ln ) lim ln(ln ) ln(ln 2)

b

b b
x b

 
     

 
The series diverges by the integral test.  

to see that the absolute value of 
our series diverges 
 
Note:  I had to use substitution 
to find the antiderivative:  u = ln 
x 
 
 
Because this series diverges, 
we do not have absolute 
convergence. 

1
lim 0

lnn n n
   the terms approach zero 

   
1 1

1 ln 1 lnn n n n


 
  The terms decrease in size. 

Now use the AST to determine if 
the alternating series will 
converge conditionally. 
Test to see if the terms 
approach zero and if they are 
decreasing. 

The series converges conditionally by the Alternating 
Series Theorem. 

State the conclusion. 

 

I: Determine if the series  
1

5
n

n






  converges absolutely, converges conditionally, or 

diverges. 
 

     
1

5 1 5
n n n

n


  



    
This is our series.  I rewrote it to 
see the factor that makes it an 
alternating series. 

Consider the series  
1 1

1
5

5

n
n

n n

 


 

   
 

   

This is a convergent geometric series with   
|r| = 1/5 < 1 

Consider the absolute value 
series and test it for 
convergence.  It was nice to 
have such an easy geometric 
series! 

The series converges absolutely. State the conclusion. 
 
 
 
 
 


